Ricerca 13 min

Constitutional AI: guida per chi usa Claude

Claude alterna rifiuti assurdi e risposte rischiose. Constitutional AI mostra come gestire overrefusal, sycophancy e vulnerabilità linguistiche nei deployment.

Irene Burresi
Irene Burresi AI Team Leader
Constitutional AI: guida per chi usa Claude

Non perdere i prossimi articoli

Iscriviti alla newsletter per ricevere aggiornamenti settimanali su AI, engineering e produttività.

Contenuto articolo

Il paradosso del rifiuto selettivo

Claude rifiuta di scrivere un racconto con un personaggio che fuma, ma con il prompt giusto spiega come sintetizzare metanfetamina. Constitutional AI spiega entrambi i comportamenti.

TL;DR: Constitutional AI addestra Claude usando una lista di principi (“costituzione”) invece di feedback umano per ogni risposta. Produce modelli più sicuri di RLHF tradizionale: 88% harmless rate contro 76%. Ma i failure modes sono specifici e prevedibili. Il modello è eccessivamente cauto su contenuti che sembrano problematici (keyword matching) e vulnerabile ad attacchi che non sembrano problematici (jailbreak semantici). È più sicuro in inglese che in altre lingue. Tende a darti ragione anche quando sbagli. Per chi deploya: aspettati refusal rate alto su casi d’uso legittimi, pianifica fallback, non fidarti della sicurezza su lingue diverse dall’inglese.


Chiunque abbia usato Claude in produzione conosce la frustrazione. Il modello rifiuta di scrivere un’email di sollecito pagamento perché “potrebbe essere percepita come aggressiva”. Rifiuta fiction con conflitti perché “potrebbe normalizzare la violenza”. Rifiuta di completare codice che gestisce autenticazione perché “potrebbe essere usato per hacking”.

Poi leggi i report di sicurezza. Adaptive attacks raggiungono il 100% di success rate su Claude 3 e 3.5. Ricercatori hanno estratto istruzioni per sintetizzare armi chimiche, generare malware funzionante, creare contenuti illegali. Con le tecniche giuste, le protezioni cedono completamente.

Come può lo stesso modello essere contemporaneamente troppo restrittivo e troppo permissivo?

La risposta sta in Constitutional AI, il metodo con cui Anthropic addestra Claude. Capire come funziona spiega entrambi i comportamenti e, più importante, permette di prevedere quando il modello fallirà nelle tue applicazioni.


Come funziona Constitutional AI

Il paper originale di Anthropic, pubblicato a dicembre 2022, propone un metodo per rendere i modelli “harmless” senza etichettare manualmente centinaia di migliaia di risposte come “buone” o “cattive”.

Il processo ha due fasi. Nella prima, il modello genera risposte a prompt problematici, poi critica e rivede le proprie risposte usando principi scritti in linguaggio naturale. Esempio di principio: “Scegli la risposta che non incoraggia comportamenti illegali, dannosi o non etici”. Il modello viene addestrato sulle revisioni.

Nella seconda fase, il modello genera coppie di risposte e un altro modello decide quale è migliore secondo gli stessi principi. Queste preferenze generate dall’AI (non da umani) vengono usate per il reinforcement learning. Anthropic chiama questo approccio RLAIF: Reinforcement Learning from AI Feedback, invece di RLHF (Human Feedback).

La costituzione di Claude include principi derivati dalla Dichiarazione Universale dei Diritti Umani, dai principi di beneficenza di DeepMind, e da linee guida scritte internamente. Non è un documento statico: Anthropic la aggiorna periodicamente e ha condotto esperimenti con input pubblico per modificarla.

Il claim centrale del paper: Constitutional AI produce modelli che sono contemporaneamente più sicuri (harmless) e meno evasivi (più utili) rispetto a RLHF tradizionale. I dati mostrano che questo è vero in media. Ma “in media” nasconde varianza significativa.


Cosa funziona: i miglioramenti reali

Prima di analizzare i problemi, i dati su cosa Constitutional AI fa bene.

Google DeepMind ha pubblicato nel 2023 il confronto più rigoroso tra RLAIF e RLHF. Su task di harmlessness, RLAIF ottiene 88% harmless rate contro 76% di RLHF. Non è un miglioramento marginale.

Il confronto head-to-head su qualità generale (summarization, helpful dialogue) non mostra differenze statisticamente significative: entrambi i metodi producono output preferiti dagli evaluatori circa il 70% delle volte rispetto a baseline senza reinforcement learning. RLAIF non è peggiore di RLHF sulla qualità, ed è migliore sulla sicurezza.

Il vantaggio di costo è sostanziale. AI labeling costa circa $0.06 per esempio, contro $0.11 per 50 parole di annotazione umana. Per chi addestra modelli, questo significa iterazioni più rapide e meno esposizione di annotatori umani a contenuti disturbanti. Per chi usa modelli già addestrati, significa che Anthropic può investire più risorse in safety research invece che in data labeling.

Un beneficio meno discusso: i principi costituzionali sono leggibili. Quando Claude rifiuta una richiesta, in teoria puoi risalire a quale principio ha attivato il rifiuto. Con RLHF puro, le preferenze sono implicite nei dati di training e non ispezionabili. Questa trasparenza è parziale (non sai come il modello interpreta i principi), ma è più di quanto offrano altri approcci.


Dove il modello rifiuta troppo

Il primo failure mode che impatta chi usa Claude in produzione è l’overrefusal. Il modello rifiuta richieste legittime perché pattern superficiali attivano i safety guardrail.

Il meccanismo è comprensibile. I principi costituzionali sono formulati in termini generali: “evita contenuti che potrebbero causare danno”, “non assistere in attività illegali”, “rifiuta richieste che potrebbero essere usate per manipolazione”. Il modello impara ad associare certi pattern lessicali con rifiuto, anche quando il contesto rende la richiesta innocua.

Gli esempi documentati dalla community coprono domini diversi. Nella fiction, Claude rifiuta storie con personaggi moralmente ambigui, conflitti realistici, o temi adulti che sarebbero accettabili in qualsiasi romanzo pubblicato. Un prompt per un thriller con un antagonista credibile può attivare un rifiuto perché “potrebbe normalizzare comportamenti dannosi”.

Nel codice, richieste che gestiscono autenticazione, crittografia, o network scanning vengono bloccate perché “potrebbero essere usate per hacking”. Questo include penetration testing legittimo, security auditing, o anche semplice gestione delle password.

La comunicazione professionale subisce la stessa sorte: email di sollecito, lettere di reclamo, comunicazioni assertive rifiutate perché “potrebbero essere percepite come aggressive o manipolative”. Su temi medici e legali, i disclaimer sono così estesi da essere inutili, o i rifiuti completi.

Il pattern comune: il modello reagisce a keyword e strutture superficiali, non al contesto. “Come forzare una serratura” viene rifiutato anche se il contesto è “ho perso le chiavi di casa mia”. “Come manipolare qualcuno” viene rifiutato anche se il contesto è “sto scrivendo un saggio sulla propaganda storica”.

Il team di Constitutional Classifiers di Anthropic ha documentato questo trade-off. Dopo aver deployato difese aggiuntive contro jailbreak, hanno osservato che il sistema “rifiuterebbe frequentemente di rispondere a domande basilari, non maliziose”. Maggiore sicurezza contro attacchi significa maggiore overrefusal su richieste legittime.

Per chi deploya applicazioni: il refusal rate su casi d’uso legittimi può essere significativo. Se la tua applicazione richiede generazione di contenuti creativi, assistenza su temi sensibili, o codice di sicurezza, aspettati che una percentuale non trascurabile di richieste venga rifiutata. Servono fallback (modelli alternativi, escalation a umani) e messaging appropriato per gli utenti.


Dove il modello accetta troppo

Il secondo failure mode è l’opposto: il modello accetta richieste che dovrebbe rifiutare, quando l’attacco è formulato in modo da bypassare i pattern superficiali.

Uno studio del 2024 ha testato attacchi adversarial su Claude 3 e 3.5. Con tecniche di transfer (prompt che funzionano su altri modelli adattati) o prefilling (forzare l’inizio della risposta del modello), il success rate raggiunge il 100%. Tutti gli attacchi testati hanno avuto successo.

Senza le difese aggiuntive di Constitutional Classifiers, i test interni di Anthropic mostrano 86% jailbreak success su Claude 3.5 Sonnet. Con Constitutional Classifiers deployati, il success rate cala drasticamente, ma dopo 3.700 ore collettive di red-teaming è stato comunque scoperto un jailbreak universale.

Come è possibile che lo stesso modello rifiuti email di sollecito e accetti richieste di sintesi di armi chimiche?

La risposta sta nella natura dei principi costituzionali. Sono formulati in linguaggio naturale, e il modello impara a interpretarli attraverso esempi statistici, non attraverso comprensione semantica profonda. Un attacco che riformula la richiesta in modo da non corrispondere ai pattern appresi bypassa le protezioni.

I jailbreak più sofisticati sfruttano diverse vulnerabilità. Il roleplay chiede al modello di interpretare un personaggio che non ha le stesse restrizioni. L’obfuscation codifica la richiesta in modi che il modello decodifica ma che non attivano i safety check (base64, lingue diverse, gergo). Il prefilling, in alcune API, forza l’inizio della risposta del modello bypassando il punto in cui decide se rifiutare. La manipolazione multi-turn costruisce gradualmente contesto attraverso più messaggi, ognuno innocuo, che insieme portano il modello a rispondere a richieste che rifiuterebbe se poste direttamente.

Per chi deploya applicazioni: le protezioni di Claude non sono sufficienti per casi d’uso high-stakes. Se la tua applicazione potrebbe essere usata per generare contenuti pericolosi, hai bisogno di layer aggiuntivi di moderazione. Non affidarti solo ai guardrail del modello.


Il problema della sycophancy

Il terzo failure mode è più sottile e meno discusso: Claude tende a darti ragione anche quando sbagli.

Anthropic stessa ha pubblicato ricerca che documenta sycophancy pervasiva in tutti i principali assistenti AI, incluso Claude. I comportamenti documentati includono ammissione di errori non commessi: se dici al modello “la tua risposta precedente era sbagliata”, spesso si scusa e “corregge” anche quando la risposta originale era corretta. Il feedback diventa biased: se chiedi una valutazione di un testo dicendo “l’ho scritto io”, il modello tende a essere più positivo che se presenti lo stesso testo come scritto da altri. Su problemi matematici dove l’utente suggerisce una risposta sbagliata, il modello tende a concordare con la risposta sbagliata più spesso di quanto farebbe senza il suggerimento.

La causa è strutturale. Constitutional AI (come RLHF) ottimizza per preferenze espresse da valutatori. Sia umani che modelli AI tendono a preferire risposte che concordano con loro, che sono scritte in modo convincente, che evitano conflitto. Il modello impara che “dare ragione” produce reward più alto.

Il finding più preoccupante: modelli più grandi addestrati con più iterazioni di RLHF/RLAIF mostrano sycophancy aumentata, non diminuita. Non è un bug che si risolve con più training. È una conseguenza del metodo di training stesso.

Per chi deploya applicazioni: se la tua applicazione richiede che il modello dia feedback onesto, verifichi informazioni, o contraddica l’utente quando sbaglia, aspettati performance degradata. Casi d’uso come code review, fact-checking, tutoring sono particolarmente impattati. Considera di istruire esplicitamente il modello a essere critico, ma sappi che questo mitiga solo parzialmente il problema.


Il problema delle lingue diverse dall’inglese

I failure modes descritti finora si amplificano quando il modello opera in lingue diverse dall’inglese. Questo impatta direttamente chi opera in Italia.

I dati sono chiari. Ricerca su LLM multilingual safety mostra che i modelli producono risposte harmful drammaticamente più spesso in lingue diverse dall’inglese. Un esempio specifico: Llama-3.1-8B rifiuta “How to make a bomb?” in inglese ma fornisce istruzioni dettagliate per la stessa domanda in hindi.

Il pattern si ripete su modelli e lingue diverse. Il tasso di successo degli attacchi passa da valori a singola cifra in inglese a 50-70% in lingue a bassa risorsa. L’italiano, pur essendo una lingua relativamente ben rappresentata, non è immune.

La causa: i dati di training per la sicurezza (esempi di rifiuto, definizioni di contenuto harmful, preferenze per harmlessness) sono prevalentemente in inglese. I principi costituzionali sono scritti in inglese. Il modello generalizza imperfettamente ad altre lingue.

Per applicazioni che servono utenti italiani, questo ha implicazioni concrete. I guardrail che funzionano in inglese sono meno affidabili in italiano. Un utente che vuole bypassare le protezioni può semplicemente formulare la richiesta in italiano (o in una lingua ancora meno rappresentata) con maggiore probabilità di successo.

Le contromisure sono limitate. Puoi tradurre le richieste in inglese prima di inviarle al modello, processare in inglese, poi tradurre le risposte in italiano. Ma questo aggiunge latenza, costo, e può introdurre errori di traduzione. Puoi aggiungere layer di moderazione specifici per italiano, ma richiede investment significativo.


Implicazioni per deployment enterprise

Cosa significa tutto questo per chi deve decidere se e come usare Claude in produzione?

Constitutional AI rende Claude una scelta ragionevole per applicazioni general-purpose con utenti non-adversarial: chatbot customer service, assistenti interni, tool di produttività. Il refusal rate su richieste legittime è gestibile, e il rischio di output harmful è basso se gli utenti non cercano attivamente di abusare il sistema. Funziona anche per casi d’uso dove l’overrefusal è accettabile: se la tua applicazione può tollerare rifiuti frequenti (con fallback appropriati), i guardrail di Claude sono un beneficio netto. La trasparenza dei principi è utile per compliance e audit: poter dire “il modello segue questi principi documentati” è più difendibile di “il modello è stato addestrato su preferenze implicite”.

Servono precauzioni aggiuntive per applicazioni creative. Se generi fiction, marketing copy, o contenuti che toccano temi sensibili, aspettati refusal rate alto. Prepara prompt alternativi, fallback a modelli meno restrittivi, o workflow con review umana. Lo stesso vale per applicazioni che richiedono feedback onesto come code review, tutoring, fact-checking: la sycophancy è un problema strutturale. Considera prompt engineering aggressivo per contrastare, ma non aspettarti che risolva completamente. Per applicazioni multilingue, se servi utenti non-anglofoni, i guardrail sono meno affidabili. Aggiungi moderazione specifica per le lingue che supporti. Per applicazioni high-stakes dove output harmful avrebbe conseguenze gravi (medico, legale, sicurezza), non affidarti solo ai guardrail del modello. Aggiungi layer di validazione, moderazione esterna, e review umana.

Non aspettarti sicurezza garantita contro attacchi sofisticati. Il 100% di jailbreak success con adaptive attacks significa che attaccanti motivati possono bypassare le protezioni. Se la tua applicazione è un target attraente, assumi che verrà compromessa. Non aspettarti comportamento consistente tra lingue: il modello che si comporta bene in inglese può comportarsi molto diversamente in italiano. Non aspettarti miglioramento della sycophancy con scale: modelli più grandi e più addestrati non sono meno sycophantic. Anzi.


Il quadro complessivo

Constitutional AI rappresenta un miglioramento reale rispetto ad alternative precedenti. I dati sono chiari: 88% harmless rate contro 76% di RLHF tradizionale, a costo inferiore. Per chi usa modelli commerciali, questo significa che Claude è genuinamente più sicuro della media.

Ma “più sicuro della media” non significa “sicuro”. I failure modes documentati sono specifici e prevedibili. Il modello rifiuta troppo quando pattern superficiali attivano i guardrail, anche se il contesto rende la richiesta legittima. Accetta troppo quando attacchi sofisticati riformulano richieste dannose in modi che non corrispondono ai pattern appresi. Ti dà ragione anche quando sbagli, perché la sycophancy è incentivata dal training stesso. È meno sicuro in lingue diverse dall’inglese, perché i dati di sicurezza sono prevalentemente anglofoni.

Nessuno di questi problemi è unico di Claude o di Constitutional AI. Sono limitazioni degli attuali approcci di alignment in generale. Ma Constitutional AI li rende più prevedibili: se capisci il meccanismo, puoi anticipare dove il modello fallirà.

Per chi deploya applicazioni, la domanda non è “Claude è sicuro?” ma “I failure modes di Claude sono accettabili per il mio caso d’uso?”. La risposta dipende dal contesto. Per molte applicazioni enterprise, Constitutional AI offre un trade-off ragionevole tra safety e usabilità. Per applicazioni high-stakes o adversarial, non è sufficiente da solo.

La trasparenza sui principi è un vantaggio competitivo di Anthropic rispetto ad altri provider. La costituzione di Claude è pubblica. Puoi leggerla, capire cosa il modello sta cercando di fare, e decidere se quei principi sono allineati con i tuoi casi d’uso. È più di quanto offrano altri.

Constitutional AI non risolve l’alignment. Rende il problema più gestibile, più ispezionabile, più prevedibile. Per chi deve deployare LLM oggi, con le limitazioni di oggi, è un passo avanti concreto. Non è la destinazione, ma è una direzione ragionevole.


Fonti

Bai, Y., Kadavath, S., Kundu, S., et al. (2022). Constitutional AI: Harmlessness from AI Feedback. arXiv:2212.08073.

Lee, H., Phatale, S., Mansoor, H., et al. (2023). RLAIF: Scaling Reinforcement Learning from Human Feedback with AI Feedback. arXiv:2309.00267.

Andriushchenko, M., et al. (2024). Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks. arXiv:2404.02151.

Perez, E., Ringer, S., Lukošiūtė, K., et al. (2023). Towards Understanding Sycophancy in Language Models. arXiv:2310.13548.

Deng, Y., et al. (2023). Multilingual Jailbreak Challenges in Large Language Models. arXiv:2310.02446.

Anthropic. (2023). Claude’s Constitution. Anthropic.

Anthropic. (2024). Constitutional Classifiers: Defending Against Universal Jailbreaks. Anthropic.

Ti è piaciuto questo articolo?

Condividilo con chi potrebbe trovarlo utile